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Estimation for cusp

Suppose X1,X2, . . . ,Xn are i.i.d. random variables with the
probability density function

f (x , θ) = C(λ)e−|x−θ|
λ
, 0 < λ <

1
2
.

Let Ln(θ) =
∑n

i=1 log f (Xi , θ). Apply the transformation
t = n1/(2λ+1)(θ − θ0) or equivalently θ = θ0 + tn−1/(2λ+1).
Consider the log-likelihood ratio process

Mn(θ) = Ln(θ)− Ln(θ0)

or equivalently Zn(t) = Mn(θ0 + tn−1/(2λ+1)).
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Estimation for cusp

Theorem : The sequence of stochastic processes
{Zn(t),−τ ≤ t ≤ τ} converge in distribution to the
Gaussian process {Z (t),−τ ≤ t ≤ τ} with mean

E [Z (t)] = −K (λ)|t |2λ+1

and

Cov(Z (t),Z (s)) = K (λ)[|t |2λ+1 + |s|2λ+1 − |t − s|2λ+1].
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Estimation for cusp

‘‘Asymptotic Distributions in Some Non-regular Statistical
Problems” was the topic of my Ph.D. Dissertation prepared
under the guidance of Prof. Herman Rubin at Michigan
State University in 1966. One of the non-regular problems
studied in the dissertation was the problem of estimation of
the location of cusp of a continuous density. The approach
adapted was to study the limiting distribution of the
log-likelihood ratio process and then obtain the asymptotic
properties of the maximum likelihood estimator.
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It turned out that the limiting process is a special type of a
non-stationary gaussian process. The name fractional
Brownian motion was not in vogue in those years and the
limiting process is nothing but a functional shift of a
fractional Brownian motion.

5 / 82 B.L.S. Prakasa Rao Statistical Inference for Fractional Diffusion Processes



Estimation for cusp
Self-similar processes

Fractional Brownian motion
fractional Gaussian noise

Stochastic integral with respect to a fBm Z
Fractional diffusion processes

Nonparametric inference
Nonparametric inference

References

Self-similar processes

Long range dependence phenomenon is said to occur in a
stationary time series {Xn,n ≥ 0} if the Cov(X0,Xn) of the
time series tends to zero as n→∞ and yet the condition

∞∑
n=0

|Cov(X0,Xn)| =∞

holds. In other words the covariance between X0 and Xn
tends to zero but so slowly that their sums diverge.
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Self-similar processes

Long range dependence is also related to the concept of
self-similarity for a stochastic process in that the
increments of a self-similar process with stationary
increments exhibit long range dependence.
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Self-similar processes

A real-valued stochastic process Z = {Z (t),−∞ < t <∞}
is said to be self-similar with index H > 0 if, for any a > 0,

{Z (at),−∞ < t <∞} = {aHZ (t),−∞ < t <∞}

where the equality indicates the equality of the finite
dimensional distributions of the process on the right side of
the equation with the corresponding finite dimensional
distributions of the process on the left side of the equation .
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Self-similar processes

The index H is called the scaling exponent or the fractal
index or the Hurst parameter of the process. If H is the
scaling exponent of a self-similar process Z , then the
process Z is called H-self similar process or H-ss process
for short. It can be checked that a non-degenerate H-ss
process cannot be a stationary process.
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Self-similar processes

If {Z (t), t > 0} is a H-ss process, then the process

Y (t) = e−tHZ (et ),−∞ < t <∞

is a stationary process.
Conversely if Y = {Y (t),−∞ < t <∞} is a stationary
process, then Z = {tHY (log t), t > 0} is a H-ss process.
Suppose Z = {Z (t),−∞ < t <∞} is a H-ss process with
finite variance and stationary increments,then the following
properties hold:
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Self-similar processes

(i) Z (0) = 0 a.s;
(ii) If H 6= 1, then E(Z (t)) = 0,−∞ < t <∞;

(iii) Z (−t) and −Z (t) have the same distribution;
(iv)E(Z 2(t)) = |t |2HE(Z 2(1));
(v)The covariance function ΓH(t , s) of the process Z is
given by

ΓH(t , s) =
1
2
{|t |2H + |s|2H − |t − s|2H}E(Z 2(1)).
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Self-similar processes

(vi)The self-similarity parameter, also called the scaling
exponent or fractal index H, is less than or equal to one.
(vii) If H = 1, then Z (t) = t Z (1) a.s. for −∞ < t <∞.
(viii) Let 0 < H ≤ 1. Then the function
RH(s, t) = {|t |2H + |s|2H −|t − s|2H} is nonnegative definite.
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Self-similar processes

It was observed that there are some phenomena which
exhibit self-similar behaviour locally but the nature of
self-similarity changes as the phenomenon evolves. It was
suggested that the parameter H must be allowed to vary
as function of time for modeling such data. Such
processes are called locally self-similar.
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fractional Brownian motion

A Gaussian process H-ss process

W H = {WH(t),−∞ < t <∞}

with stationary increments and with fractal index 0 < H < 1
is called a fractional Brownian motion (fBm).
It is said to be standard if Var(W H(1)) = 1.
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fractional Brownian motion

For any 0 < H < 1, there exists a version of the fBm for
which the sample paths are continuous with probability one
but are not differentiable even in the L2-sense. The
continuity of the sample paths follows from the
Kolmogorov’s continuity condition and the fact that

E |W H(t2)−W H(t1)|α = E |W H(1)|α|t2 − t1|αH

from the property that the fBm is a H-ss process with
stationary increments. Choose α such that αH > 1 to
satisfy the Kolmogorov’s continuity condition.
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fractional Brownian motion

Furthermore

E |W
H(t2)−W H(t1)

t2 − t1
|2 = E [W H(1)

2
]|t2 − t1|2H−2

and the last term tends to infinity as t2 → t1 since H < 1.
Hence the paths of the fBm are not L2-differentiable.
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fractional Brownian motion

Consider the fBm W H on the interval [0,T ] with Hurst
index H. Then

lim
n→∞

2n−1∑
j=0

|W H(
j + 1
2n T )−W H(

j
2n T )|p = 0 a.s if pH > 1

= ∞ a.s if pH < 1
= T a.s if pH = 1
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fractional Brownian motion

(cf. Decreusefond and Ustunel(1999), Potential Analysis,
10, 177-214).
(a) If H = 1

2 and p = 2, then we have the Baxter’s theorem.

(b) If H > 1
2 and p = 2, then the quadratic variation of the

process W H is zero a.s. and the process is called a
Dirichlet process.
(c) If H < 1

2 and p = 2, then the process W H has infinite
quadratic variation a.s.
(d) If pH = 1, then the process W H has finite p-th variation
a.s.
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Furthermore
n−1∑
j=0

|W H(t(n)
j+1)−W H(t(n)

j )|2

tends to zero in probability as n tends to infinity for any
sequence of subdivisions 0 = t(n)

0 < t(n)
1 < · · · < t(n)

n = T of
the interval [0,T ], such that the norm of the subdivision
goes to zero as n→∞. Hence the process W H is not a
semimartingale cf. Liptser and Shiryayev (Theory of
Martingales, 1986.)
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Representation of standard fBm {Z (t), t ≥ 0} with Hurst
index H : For 0 ≤ s ≤ t ,

Z (t)− Z (s) = CH(

∫ t

s
(t − u)H− 1

2 W (du)

+

∫ t

−∞
[(t − u)H− 1

2 − (s − u)H− 1
2 ]W (du))

where

CH = [
2HΓ(3

2 − H)

Γ(H + 1
2)Γ(2− 2H)

]1/2.
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fractional Gaussian noise

Suppose {Z (t),−∞ < t <∞} is a H-self similar process
with stationary increments and 0 < H < 1. Define

Xk = Z (k + 1)− Z (k),−∞ < k <∞.

If the process Z is a fBm, then the process {Xk} is called
fractional Gaussian noise. The autocovariance function
of the process {Xk} is

γ(k) = E(XiXk+i) =
σ2

2
(|k+1|2H+|k−1|2H−2|k |2H), E [X 2

k ] = σ2.
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fractional Gaussian noise

Suppose k 6= 0. Then γ(k) = 0 if H = 1
2 , γ(k) < 0 if

0 < H < 1
2 , and γ(k) > 0 if 1

2 < H < 1. This follows by
noting that the function f (x) = x2H is strictly convex if
1
2 < H < 1 and strictly concave if 0 < H < 1

2 for x > 0. If
1
2 < H < 1, then

∑∞
∞ γ(k) =∞ and the process

{Xk ,−∞ < k <∞} exhibits long range dependence.
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Stochastic integral with respect to a fBm

(i)If Y is a simple process,that is

Yt =
k∑

j=1

Xj I(tj−1,tj ](t),

define ∫ ∞
−∞

YtdZt =
k∑

j=1

Xj(Z (tj)− Z (tj−1)).
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Stochastic integral with respect to a fBm

(ii) If the process Y is of locally bounded variation, then
define ∫ b

a
YtdZt = YbZb − YaZa −

∫ b

a
ZtdYt

using the integration by parts formula and interpreting the
integral on the right side as the Lebesgue-Stieltjes integral.
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Stochastic integral with respect to a fBm

(iii) For any non-random (deterministic function)
f ∈ L2(R) ∩ L1(R), define∫ ∞
−∞

f (t)dZt = CH(H− 1
2

)

∫ ∞
−∞

[

∫ ∞
τ

(t−τ)H− 1
2 f (t)dt ]W (dτ).
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Stochastic integral with respect to a fBm

In general, it is not possible to define a stochastic integral
of a random function with respect to a fractional Brownian
motion as in the case of Ito integrals for non-anticipating
processes using limits of Riemann type partial sums. This
is due to the fact that fBm is not a semimartingale. There
are other approaches to define a stochastic integral using
the notion of Wick product but they do not seem to be
useful for interpretation for stochastic modeling.
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Stochastic integral with respect to a fBm

There is a nice covariance formula in this context.

E [

∫ ∞
−∞

f (t)dZt

∫ ∞
−∞

g(t)dZt ]

= H(2H − 1)

∫ ∞
−∞

∫ ∞
−∞

f (s)g(t)|t − s|2H−2dtds.
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Fractional diffusion processes

Consider the stochastic process Y = {Yt , t ≥ 0} defined
by the stochastic integral equation

Yt =

∫ t

0
C(s)ds +

∫ t

0
B(s)dW H

s , t ≥ 0

where C = {C(t), t ≥ 0} is an adapted process with
respect to the underlying filtration and the function B(.) is a
non-vanishing non-random function.
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Fractional diffusion processes

Write the above integral equation as a stochastic
differential equation

dYt = C(t)dt + B(t)dW H
t , t ≥ 0

driven by the fractional Brownian motion W H . Such a
process is called a fractional diffusion process. The
process Y is not a semimartingale. However one can
associate a semimartingale Z = {Zt , t ≥ 0} which is called
a fundamental semimartingale such that the natural
filtration of the process Z coincides with the natural
filtration of the process Y (Kleptsyna et al. (2000)).
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Define, for 0 < s < t ,

kH = 2H Γ(
3
2
− H) Γ(H +

1
2

),

κH(t , s) = k−1
H s

1
2−H(t − s)

1
2−H ,

λH =
2H Γ(3− 2H) Γ(H + 1

2)

Γ(3
2 − H)

,

wH
t = λ−1

H t2−2H ,

and

MH
t =

∫ t

0
κH(t , s)dW H

s , t ≥ 0.
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The process MH is a Gaussian martingale, called the
fundamental martingale and its quadratic variation
< MH

t >= wH
t . Further more the natural filtration of the

martingale MH coincides with the natural filtration of the
fBm W H . In fact the stochastic integral∫ t

0
B(s)dW H

s

can be represented in terms of the stochastic integral with
respect to the martingale MH .
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For a measurable function f on [0,T ], let

K f
H(t , s) = −2H

d
ds

∫ t

s
f (r)rH− 1

2 (r − s)H− 1
2 dr ,0 ≤ s ≤ t

when the derivative exists in the sense of absolute
continuity with respect to the Lebesgue measure.
Let MH be the fundamental martingale associated with the
fBm W H . Then∫ t

0
f (s)dW H

s =

∫ t

0
K f

H(t , s)dMH
s , t ∈ [0,T ]

a.s [P] whenever both sides are well defined.
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Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are

smooth enough so that

QH(t) =
d

dwH
t

∫ t

0
κH(t , s)

C(s)

B(s)
ds, t ∈ [0,T ]

is well-defined where

wH
t = λ−1

H t2−2H , κH(t , s) = k−1
H s

1
2−H(t − s)

1
2−H .

Kleptsyna et al. (2000) associates a fundamental
semimartingale Z associated with the process Y such that
the natural filtration of the processes Z coincides with the
natural filtration Y .
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Theorem : Suppose the sample paths of the process QH
belong P-a.s to L2([0,T ],dwH). Let the process
Z = {Zt , t ∈ [0,T ]} be defined by

Zt =

∫ t

0

κH(t , s)

B(s)
dYs.

Then the following results hold: (i) The process Z is a
semimartingale with the decomposition

Zt =

∫ t

0
QH(s)dwH

s + MH
t .
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(ii) the process Y admits the representation

Yt =

∫ t

0
K B

H (t , s)dZs.
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(iii) the natural filtrations of the processes Z and Y
coincide. Kleptsyna et al. (2000) derived the following
Girsanov type formula .
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Theorem : Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t −
1
2

∫ t

0
Q2

H(t)dwH
t }.

Suppose that E(ΛH(T )) = 1. Then the measure
P∗ = ΛH(T )P is a probability measure and the probability
measure of the process Y under P∗ is the same as that of
the process V defined by

Vt =

∫ t

0
B(s)dW H

s ,0 ≤ t ≤ T .

.
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Linear SDE driven by fBm

Statistical inference for diffusion type processes satisfying
stochastic differential equations driven by Wiener
processes have been studied earlier. There has been a
recent interest to study similar problems for stochastic
processes driven by a fractional Brownian motion,
hereafter called fractional diffusion processes, for modeling
stochastic phenomena with possible long range
dependence.
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Fractional Ornstein-Uhlenbeck type process is a fractional
analogue of the Ornstein-Uhlenbeck process, that is, a
continuous time first order autoregressive process
X = {Xt , t ≥ 0} which is the solution of the
one-dimensional homogeneous linear stochastic
differential equation driven by a fractional Brownian motion
(fBm) W H = {W H

t , t ≥ 0} with Hurst parameter
H ∈ [1/2,1). Such a process is the unique Gaussian
process satisfying the linear integral equation

Xt = θ

∫ t

0
Xsds + σW H

t , t ≥ 0.
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The problem is to estimate the parameters θ and σ2 based
on the observation {Xs,0 ≤ s ≤ T} and study their
properties as T →∞. Let us consider a slightly more
general stochastic differential equation

dX (t) = [a(t ,X (t))+θ b(t ,X (t))]dt+σ(t)dW H
t ,X (0) = 0, t ≥ 0.

Let
C(θ, t) = a(t ,X (t)) + θ b(t ,X (t)), t ≥ 0.
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Define

QH,θ(t) =
d

dwH
t

∫ t

0
κH(t , s)

C(θ, s)

σ(s)
ds, t ≥ 0

and

Zt =

∫ t

0

κH(t , s)

σ(s)
dXs, t ≥ 0.
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Linear SDE driven by fBm

Then the process Z = {Zt , t ≥ 0} is semimartingale with
the decomposition

Zt =

∫ t

0
QH,θ(s)dwH

s + MH
t

where MH is the fundamental martingale and the process
X admits the representation

Xt =

∫ t

0
K σ

H (t , s)dZs

where the function K σ
H (., .) can be explicitly specified.
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Linear SDE driven by fBm

Let PT
θ be the measure induced by the process

{Xt ,0 ≤ t ≤ T} when θ is the true parameter. The
Radon-Nikodym derivative of PT

θ with respect to PT
0 is

given by

dPT
θ

dPT
0

= exp[

∫ T

0
QH,θ(s)dZs −

1
2

∫ T

0
Q2

H,θ(s)dwH
s ].
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Maximum likelihood estimation : Consider the problem
of estimation of the parameter θ based on the observation
of the process X = {Xt ,0 ≤ t ≤ T} and study its
asymptotic properties as T →∞.
Strong consistency : Let LT (θ) denote the

Radon-Nikodym derivative dPT
θ

dPT
0
. The maximum likelihood

estimator (MLE) θ̂T is defined by the relation

LT (θ̂T ) = sup
θ∈Θ

LT (θ).
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Note that

QH,θ(t) =
d

dwH
t

∫ t

0
κH(t , s)

C(θ, s)

σ(s)
ds

=
d

dwH
t

∫ t

0
κH(t , s)

a(s,X (s))

σ(s)
ds

+θ
d

dwH
t

∫ t

0
κH(t , s)

b(s,X (s))

σ(s)
ds

= J1(t) + θJ2(t).(say)
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Then

log LT (θ) =

∫ T

0
(J1(t)+θJ2(t))dZt−

1
2

∫ T

0
(J1(t)+θJ2(t))2dwH

t

and the likelihood equation is given by∫ T

0
J2(t)dZt −

∫ T

0
(J1(t) + θJ2(t))J2(t)dwH

t = 0.

Hence the MLE θ̂T of θ is given by

θ̂T =

∫ T
0 J2(t)dZt +

∫ T
0 J1(t)J2(t)dwH

t∫ T
0 J2

2 (t)dwH
t

.
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Let θ0 be the true parameter. Using the fact that

dZt = (J1(t) + θ0J2(t))dwH
t + dMH

t ,

it can be shown that
dPT

θ

dPT
θ0

= exp[(θ−θ0)

∫ T

0
J2(t)dMH

t −
1
2

(θ−θ0)2
∫ T

0
J2

2 (t)dwH
t ].

Following this representation of the Radon-Nikodym
derivative, we obtain that

θ̂T − θ0 =

∫ T
0 J2(t)dMH

t∫ T
0 J2

2 (t)dwH
t

.
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Note that the quadratic variation < Z > of the process Z is
the same as the quadratic variation < MH > of the
martingale MH which in turn is equal to wH . Hence

[wH
T ]−1 lim

n
Σ[Z

t(n)
i+1
− Z

t(n)
i

]2 = 1 a.s [Pθ0 ]

where (t(n)
i ) is a partition of the interval [0,T ] such that

sup |t(n)
i+1 − t(n)

i | tends to zero as n→∞.
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If the function σ(t) is an unknown constant σ, the above
property can be used to obtain a strongly consistent
estimator of σ2 based on the continuous observation of the
process X over the interval [0,T ]. Here after we assume
that the non-random function σ(t) is known.
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Theorem : The maximum likelihood estimator θ̂T is
strongly consistent, that is,

θ̂T → θ0 a.s [Pθ0 ] as T →∞

provided∫ T

0
J2

2 (t)dwH
t →∞ a.s [Pθ0 ] as T →∞.
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Limiting distribution : We now discuss the limiting
distribution of the MLE θ̂T as T →∞.
Let

RT =

∫ T

0
J2(t)dMH

t ,T ≥ 0.
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Theorem : Assume that the functions b(t , s) and σ(t) are
such that the process {Rt , t ≥ 0} is a local continuous
martingale and that there exists a norming function It , t ≥ 0
such that

I2
T < RT >= I2

T

∫ T

0
J2

2 (t)dwH
t

p→ η2 as T →∞

where IT → 0 as T →∞ and η is a random variable such
that P(η > 0) = 1.
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Then

(IT RT , I2
T < RT >)→ (ηZ , η2) in distribution as T →∞

where the random variable Z has the standard normal
distribution and the random variables Z and η are
independent.
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Theorem : Suppose the conditions stated earlier hold.
Then

I−1
T (θ̂T − θ0)→ Z

η
in distribution as T →∞

where the random variable Z has the standard normal
distribution and the random variables Z and η are
independent.
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Remarks : If the random variable η is a constant with
probability one, then the limiting distribution of the
maximum likelihood estimator is normal with mean 0 and
variance η−2. Otherwise it is a mixture of the normal
distributions with mean zero and variance η−2 with the
mixing distribution as that of η. The rate of convergence of
the distribution of the maximum likelihood estimator can
also be obtained.
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Bayes estimation : Suppose that the parameter space Θ
is open and Λ is a prior probability measure on the
parameter space Θ. Further suppose that Λ has the
density λ(.) with respect to the Lebesgue measure and the
density function is continuous and positive in an open
neighbourhood of θ0, the true parameter. Let

αT ≡ IT RT = IT
∫ T

0
J2(t)dMH

t

and

βT ≡ I2
T < RT >= I2

T

∫ T

0
J2

2 (t)dwH
t .
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The maximum likelihood estimator satisfies the relation

αT = (θ̂T − θ0)I−1
T βT .

The posterior density of θ given the observation
X T ≡ {Xs,0 ≤ s ≤ T} is given by

p(θ|X T ) =

dPT
θ

dPT
θ0

λ(θ)∫
Θ

dPT
θ

dPT
θ0

λ(θ)dθ
.
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Let us write t = I−1
T (θ − θ̂T ) and define

p∗(t |X T ) = IT p(θ̂T + tIT |X T ).

Then the function p∗(t |X T ) is the posterior density of the
transformed variable t = I−1

T (θ − θ̂T ). Let

νT (t) ≡
dPθ̂T +tIT

/dPθ0

dPθ̂T
/dPθ0

=
dPθ̂T +tIT

dPθ̂T

a.s.

and
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CT =

∫ ∞
−∞

νT (t)λ(θ̂T + tIT )dt .
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It can be checked that

p∗(t |X T ) = C−1
T νT (t)λ(θ̂T + tIT )

and

log νT (t) = I−1
T αT [(θ̂T + tIT − θ0)− (θ̂T − θ0)]

−1
2

I−2
T βT [(θ̂T + tIT − θ0)2 − (θ̂T − θ0)2]

= tαT −
1
2

t2βT − tβT I−1
T (θ̂T − θ0)

= −1
2
βT t2.
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For convenience, we write β = η2. Then

βT → β a.s [Pθ0 ] as T →∞.
Further suppose that K (t) is a nonnegative measurable
function such that, for some 0 < ε < β,∫ ∞

−∞
K (t) exp[−1

2
t2(β − ε)]dt <∞

and the maximum likelihood estimator θ̂T is strongly
consistent, that is,

θ̂T → θ0 a.s [Pθ0 ] as T →∞.
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In addition, suppose that the following condition holds for
every ε > 0 and δ > 0 :

exp[−εI−2
T ]

∫
|u|>δ

K (uI−1
T )λ(θ̂T +u)du → 0 a.s.[Pθ0 ] as T →∞.

Then we have the following theorem which is an analogue
of the Bernstein - von Mises theorem.
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Theorem : Suppose that λ(.) is a prior density which is
continuous and positive in an open neighbourhood of θ0,
the true parameter. Under some additional regularity
conditions,

lim
T→∞

∫ ∞
−∞

K (t)|p∗(t |X T )−(
β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ].
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As a consequence of the above theorem, we obtain the
following result by choosing K (t) = |t |m, for some integer
m ≥ 0.
Theorem : Assume that the following conditions hold:

(C1) θ̂T → θ0 a.s [Pθ0 ] as T →∞,

(C2) βT → β > 0 a.s [Pθ0 ] as T →∞.
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Further suppose that (C3)λ(.) is a prior probability density
on Θ which is continuous and positive in an open
neighbourhood of θ0, the true parameter and

(C4)

∫ ∞
−∞
|θ|mλ(θ)dθ <∞

for some integer m ≥ 0. Then

lim
T→∞

∫ ∞
−∞
|t |m|p∗(t |X T )−(

β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ].
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In particular, choosing m = 0, we obtain that

lim
T→∞

∫ ∞
−∞
|p∗(t |X T )− (

β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ]

whenever the conditions (C1), (C2) and (C3) hold. This is
the analogue of the Bernstein-von Mises theorem for a
class of diffusion processes proved in Prakasa Rao (1981)
and it shows the asymptotic convergence in the L1-mean
of the posterior density to the normal distribution.
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As a corollary , we also obtain that the conditional
expectation, under Pθ0 , of [I−1

T (θ̂T − θ)]m converges to the
corresponding m-th absolute moment of the normal
distribution with mean zero and variance β−1. We define a
regular Bayes estimator of θ, corresponding to a prior
probability density λ(θ) and the loss function L(θ, φ), based
on the observation X T , as an estimator which minimizes
the posterior risk

BT (φ) ≡
∫ ∞
−∞

L(θ, φ)p(θ|X T )dθ.

over all the estimators φ of θ.
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Suppose there exists a measurable regular Bayes
estimator θ̃T for the parameter θ (cf. Theorem 3.1.3,
Prakasa Rao (1987).) Suppose that the loss function
L(θ, φ) satisfies the following conditions:

L(θ, φ) = `(|θ − φ|) ≥ 0

and the function `(t) is nondecreasing for t ≥ 0. An
example of such a loss function is L(θ, φ) = |θ − φ|.
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Suppose there exist nonnegative functions R(t), J(t) and
G(t) such that (D1) R(t)`(tIT ) ≤ G(t) for all T ≥ 0, and
(D2) R(t)`(tIT )→ J(t) as T →∞ uniformly on bounded
intervals of t . Further suppose that the function

(D3)

∫ ∞
−∞

J(t + h) exp[−1
2
βt2]dt

has a strict minimum at h = 0. Under some additional
conditions on the function G(t), the following result gives
the asymptotic properties of the Bayes risk of the estimator
θ̃T .
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Theorem : Suppose the conditions (C1) to (C3) and the
conditions (D1) to (D3) stated above hold. Then

I−1
T (θ̃T − θ̂T )→ 0 a.s [Pθ0 ] as T →∞

and

lim
T→∞

R(T )BT (θ̃T ) = lim
T→∞

R(T )BT (θ̂T )

= (
β

2π
)1/2

∫ ∞
−∞

K (t) exp[−1
2
βt2]dt a.s [Pθ0 ].
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We have observed earlier that

I−1
T (θ̂T − θ0)→ N(0, β−1) in distribution as T →∞.

As a consequence, we obtain that

θ̃T → θ0 a.s [Pθ0 ] as T →∞

and

I−1
T (θ̃T − θ0)→ N(0, β−1) in distribution as T →∞.
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In other words, the Bayes estimator is asymptotically
normal and has asymptotically the same distribution as the
maximum likelihood estimator.
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Consider the stochastic differential equation

dXt = S(Xt ) dt + ε dW H
t ,X0 = x0,0 ≤ t ≤ T

where the function S(.) is unknown. We have to estimate
the function S(.) based on the observation {Xt ,0 ≤ t ≤ T}.
Suppose {xt ,0 ≤ t ≤ T} is the solution of the differential
equation

dxt

dt
= S(xt ), x0,0 ≤ t ≤ T .
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Further suppose that the trend coefficient S(x) satisfies
the following conditions which ensure the existence and
uniqueness of the solution of the SDE.
(A1) : There exists L > 0 such that
|S(x)− S(y)| ≤ L|x − y | whenever |x |, |y | ∈ R.
(A2) : There exists a constant L > 0 such that
|S(x)| ≤ M(1 + |x |), x ∈ R.
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Lemma : Let the function S(.) satisfy the conditions (A1)
and (A2) and suppose that LN = L for all N ≥ 1 . Then,
with probability one,

(a)|Xt − xt | < eLtε|W H
t |

and
(b) sup

0≤t≤T
E(Xt − xt )

2 ≤ e2LT ε2T 2H .
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Proof of (a) : Let ut = |Xt − xt |. Then, by (A1), we have

ut ≤
∫ t

0
|S(Xv )− S(xv )|dv + ε |W H

t |

≤ L
∫ t

0
uv dv + ε |W H

t |.

Applying the Gronwall’s lemma, it follows that

ut ≤ ε|W H
t |eLt .

Proof of (b) :Check that

E(Xt − xt )
2 ≤ e2Ltε2E(|Wt |H)2 = e2Ltε2t2H .

Hence
sup

0≤t≤T
E(Xt − xt )

2 ≤ e2LT ε2T 2H .
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Let Θ0(L) denote the class of all functions S(x) satisfying
the conditions (A1) and (A2). Let Θk (L) denote the class of
all functions S(x) defined on the interval [0,T ] which are
uniformly bounded by the same constant C and which are
k -times differentiable with respect to x satisfying the
condition

|S(k)(x)− S(k)(y)| ≤ L|x − y |, x , y ∈ R.

Here g(k)(x) denotes the k -th derivative of g(.) at x.
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Let G(u) be a bounded function with finite support [A,B]
satisfying the condition (A3)G(u) = 0 for u < A and u >
B, and

∫ B
A G(u)du = 1. Suppose that the following

conditions are satisfied by the function G(.) :
(i)
∫∞
−∞G2(u)du <∞;

(ii)
∫∞
−∞ u2(k+1)G2(u)du <∞ , and

(iii)
∫∞
−∞ (G(u))

1
H du <∞.

Define a kernel type estimator of the trend S(Xt ) as

Ŝt =
1
ϕε

∫ T

0
G
(
τ − t
ϕε

)
dXτ

where ϕε → 0, ε2ϕ−1
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Theorem : Suppose that the trend function S(x) ∈ Θ0(L)
and the function ϕε → 0 such that ε2ϕ−1

ε −→ 0 as ε→ 0.
Suppose the conditions (A1), (A2) and (A3) are satisfied.
Then, for any 0 < c ≤ d < T , the estimator Ŝt is uniformly
consistent, that is ,

lim
ε→0

sup
S(x)∈Θ0(L)

sup
c≤t≤d

ES(|Ŝt − S(xt )|2) = 0.
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In addition to the conditions (A1)− (A3), assume that
(A4)

∫∞
−∞ ujG(u)du = 0 for j =

1,2, ...k ;
∫∞
−∞ |G(U)uk+1|du <∞.

Theorem : Suppose that the function S(x) ∈ Θk+1(L) and
ϕε = ε

1
k−H+2 . Then, under the conditions (A1), (A2), (A3)

and (A4),

lim sup
ε→0

sup
S(x)∈Θk+1(L)

sup
c≤t≤d

ES(|Ŝt − S(xt )|2)ε
−2(k+1)
k−H+2 <∞.
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Theorem : Suppose that the function S(x) ∈ Θk+1(L) and
ϕε = ε

1
k−H+2 . Then, under the conditions (A1), (A2), (A3)

and (A4), the asymptotic distribution of

ε
−(k+1)
k−H+2 (Ŝt − S(xt ))

is Gaussian with the mean

m =
S(k+1)(xt )

(k + 1)!

∫ ∞
−∞

G(u)uk+1 du

and the variance

σ2 = H(2H − 1)

∫ ∞
−∞

∫ ∞
−∞

G(u)G(v)|u − v |2H−2du dv

as ε→ 0.
81 / 82 B.L.S. Prakasa Rao Statistical Inference for Fractional Diffusion Processes



Estimation for cusp
Self-similar processes

Fractional Brownian motion
fractional Gaussian noise

Stochastic integral with respect to a fBm Z
Fractional diffusion processes

Nonparametric inference
Nonparametric inference

References

References

(1) B.L.S. Prakasa Rao, Asymptotic Theory of Statistical
Inference, John Wiley, New York (1987).
(2) B.L.S. Prakasa Rao, Statistical Inference for Fractional
Diffusion Processes, John Wiley, Chichester, UK (2010).

82 / 82 B.L.S. Prakasa Rao Statistical Inference for Fractional Diffusion Processes


	Estimation for cusp
	Self-similar processes
	Fractional Brownian motion
	fractional Gaussian noise
	Stochastic integral with respect to a fBm Z 
	Fractional diffusion processes
	Nonparametric inference
	Nonparametric inference
	References

